Search for high-z radio galaxies by Subaru HSC and FIRST catalogs

Takuji Yamashita (Ehime University)
T. Nagao, Y. Matsuoka, M. Niida, M. Kajisawa (Ehime U.), M. Akiyama (Tohoku U.), H. Ikeda, M. Tanaka (NAOJ), Y. Toba (ASIAA), T. Morokuma (U. Tokyo), and the members of the Subaru HSC-SSP AGN group
Radio Galaxies

Important population in evolution/formation of AGNs/galaxies

- Powerful radio jets – AGN feedback, formation of massive galaxies
- Massive host galaxies – Formation of massive galaxies
- Overdense environment (high-z) – AGN, formation of massive galaxies and cluster

Definition

- \(L(5\mathrm{GHz})/L(B) > 10 \)
 \[\text{[Kellermann et al. 1989]} \]
- \(L(1.4\mathrm{GHz}) > 10^{24} \mathrm{W/Hz} \)
 \[\text{[Tadhunter 2016]} \]

Very Bright in radio → valuable probe to high-z galaxies

Hercules A radio galaxy (HST&JVLA)
Radio Galaxies at $z > 1$

- Redshift evolution of Radio Galaxies
- $z > \sim 1$ universe is particularly important epoch
 - a growth period of BH and Star formation
 - a build-up of stellar mass in massive elliptical galaxies

Madau & Dickinson 2014
Radio Galaxies along redshift

- Evolution of Radio Galaxies themselves is standing question
- z>~1 universe is particularly important epoch
 - a growth period of BH and Star formation
 - a build-up of stellar mass in massive elliptical galaxies

Tamburri et al. 2014
Radio Galaxies along redshift

- Evolution of Radio Galaxies themselves is standing question
- $z \approx 1$ universe is particularly important epoch
 - a growth period of BH and Star formation
 - a build-up of stellar mass in massive elliptical galaxies

How did Radio Galaxies behave at $z > 1$?

![Graph showing mass fraction vs. redshift for LTG and ETG](image)

Tamburri et al. 2014
Previous Statistic Studies: Low-z RGs

- Few identified high-z radio galaxies
- Almost all the identified RGs are at $z < 1$

- SDSS - FIRST sample
 - $z < 1$
 - Matching rate $\sim 30\%$ (Ivezic et al. 2002, Helfand 2015, Ching et al. 2017), even if complex radio morphologies are included.

Optically faint host galaxies
Low space density (a few/deg2/mag)

Redshifts of spectroscopically identified RGs

FIRST 1.4GHz VLA Survey

Khabibullina & Verkhodanov 09

cf. Henfand+15
Search for radio galaxies with HSC & FIRST

Subaru HSC-SSP
- Wide-field imaging survey with g,r,i,z,y multi-band filters
- Wider and deeper (Aihara et al. 2017)

<table>
<thead>
<tr>
<th></th>
<th>Wide</th>
<th>Ultra-Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting mag i [mag]</td>
<td>26.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Area [deg²]</td>
<td>178</td>
<td>4</td>
</tr>
</tbody>
</table>

- HSC-SSP enables us to detect RGs with a higher redshift and/or a higher radio-loudness

FIRST 1.4GHz survey
- 1.4 GHz (20 cm) continuum
- Area = 10,575 deg²; ~ the SDSS region
- Detection limit = 1 mJy
 - Relatively shallow sensitivity
 → Detections of radio-AGNs ($L_{(1.4GHz)} > 10^{24}$ W/Hz) rather than star-forming galaxies at $z > 0.5$
- Angular resolution = 5”
- Astrometry < 0.5”
Subaru HSC - FIRST cross match

<table>
<thead>
<tr>
<th></th>
<th>FIRST</th>
<th>HSC</th>
<th>Matches</th>
<th>Matches/FIRST</th>
<th>Chance coincidence</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide</td>
<td>8,282</td>
<td>23,795,523</td>
<td>8,282</td>
<td>23,795,523</td>
<td>Preliminary</td>
<td></td>
</tr>
<tr>
<td>UD-COSMOS</td>
<td>118</td>
<td>643,932</td>
<td>118</td>
<td>643,932</td>
<td>Preliminary</td>
<td></td>
</tr>
</tbody>
</table>

- **Positional matching** between FIRST and Wide / UD-COSMOS with a search radius = 1”
- **Radio-core**: we focus on matching to radio-core; complex morphology radio sources is minor (10%)
HSC & FIRST Images

HSC i
10” x 10”

FIRST
2’ x 2’

Preliminary
Radio loudness (observed frame)

- Radio loudness,
 \[R = \frac{F(\text{radio})}{F(\text{optical})} = \frac{F(1.4\,\text{GHz})}{F(i\text{-band})} \]
- **Optically faint radio sources** have high observed-frame \(R \)
- Such rare objects are found in the Wide survey (●, ▲) rather than the Ultra-Deep (●, ▲).
Photo-z of the HSC-FIRST samples

- Mizuki SED template fitting (Tanaka 2015)
- xxxx (xx) HSC-FIRST Wide (UD) RGs have secure photo-z
- Almost all the samples have photo-z of 0.2 - 1.5
- **Optically faint (HSC-level) RGs** are located at \(z \approx 1 \)
Radio loudness at the rest-frame

- Rest-frame $R = \text{rest 5GHz flux} / \text{rest g-band flux}$
 - rest 5GHz flux = k-corrected obs-1.4GHz with radio-index $\alpha = -0.7$ and z_{photo}
 - rest g-band flux = a production from Mizuki SED template fitting
- Even when R is k-corrected, optically faint ($z \sim 1$) RGs show high R.

![Graph showing log R_{rest} vs. i (cModel) [AB mag] and photo-z.](Diagram)
Optical color

- HSC-level RGs have a large dispersion of color
- We have high R and blue color sources
Blue Radio Galaxies

SDSS-level (i<21.3 mag)

- local z<1
- red g-z: elliptical host galaxies

Preliminary
Blue Radio Galaxies

SDSS-level (i<21.3 mag)
- local z<1
- red g-z: elliptical host galaxies

HSC-level (i>21.3 mag)
- redshifted, z>1
- large dispersion in g-z (= rest UV @z~1)
Blue Radio Galaxies

SDSS-level (i<21.3 mag)
- local \(z<1\)
- red \(g-z\): elliptical host galaxies

HSC-level (i>21.3 mag)
- redshifted, \(z>1\)
- large dispersion in \(g-z\) (= rest UV @\(z\sim 1\))

\[\text{i (cModel) [AB mag]}\]

\[\text{g - z [AB mag]}\]

Preliminary
Blue Radio Galaxies

SDSS-level (i<21.3 mag)
- local z<1
- red g-z: elliptical host galaxies

HSC-level (i>21.3 mag)
- redshifted, z>1
- large dispersion in g-z (= rest UV @z~1)
- Blue g-z
 - relatively young elliptical galaxies (post-starburst) ?
 - AGN light

\[i (cModel) \ [AB \ mag] \]
\[g - z \ [AB \ mag] \]

Preliminary
High Excitation Radio Galaxies

- Blue color RGs are similar to HERGs (high-excitation RGs)
- HERGs have young stellar population & low stellar mass, suggesting jets via cold-gas accretion triggered by galaxy-merger (Best & Heckman 2012).

- HERGs show no Broad emission lines (Ching+17)
 - Blue color may comes from star formation

Need spectroscopy
Summary

- To create high-z (z>~1) RG sample, we started the search for HSC-FIRST RGs
- We successfully identified > xxxxx radio sources in ~xxx deg2 field.
 - Subaru HSC-SSP provides good opportunities to probe high-z RGs.
 - Optically faint RGs are located at z~1, and have higher radio-loudness and bluer color than bright RGs.
 - They show similar characteristics to HERGs.

- Future work
 - Spectroscopy z>1 RGs
 - Optical morphology and clustering will be investigated.