East-Asia AGN Workshop 2017 Dec. 4-6, 2017 @Kagoshima University, Japan

SHELLQs-ALMA: submm properties of galaxies hosting less-luminous quasars at z > 6

Takuma Izumi (NAOJ Fellow)

 \rightarrow Izumi et al. to be submitted

Co-evolution of SMBH and galaxy

- M_{BH} is tightly correlated with M_{bulge} and $\sigma_* \rightarrow Co$ -evolution
- Favoured scenario: <u>Merger-induced</u> <u>starburst & AGN</u>, and subsequent "<u>AGN feedback</u>" to regulate the star formation (e.g., Hopkins et al. 2008; Fabian 2012, ARA&A, 50, 455)

When, how, and where the relation has arisen?

Reveal (i) SMBH feeding/ feedback and (ii) galaxy growth over the cosmic time

Host galaxy properties of high-z quasars ³

- Luminous quasars at z > ~ 6(L_{Bol} > 1e14 L_{sun})
- ULIRG/SMG-class star formation!
- Rapid, vigorous, and coeval SMBH and galaxy growths (SF time scale < 100 Myr)

	Typical value					
SFR	~100 - 1000 M _{sun} /yr					
M _{gas}	~a few E10 M _{sun}					
M _{dust}	~a few E8 M _{sun}					
Мвн	~a few E9 M _{sun}					

e.g., Wang et al. 2010, ApJ, 714, 699

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- M_{halo} still similar to before: dynamical friction merges the subhalos efficiently

(a) Isolated Disk

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with Me>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core
 gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

 BH grows rapidly: briefly dominates luminosity/feedback
 remaining dust/gas expelled
 get reddened (but not Type II) QSO:

recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO
- host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

M59

 QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 "hot halo" from feedback

 sets up quasi-static cooling

- star formation terminated

- large BH/spheroid efficient feedback
 halo grows to "large group" scales:
- mergers become inefficient - growth by "dry" mergers

Hopkins et al. 2008, ApJS, 175, 356

Early co-evolution: likely a biased one

* Gas- σ is used instead of stellar σ in quasars

- M_{BH} of some optically-luminous
 z > 6 quasars are over-massive
 → <u>SMBH earlier, galaxies later?</u>
- But we should care about a selection bias to prefer luminous (~ massive) objects

Probing-down OV

uminosity objects epictless-blased mass distribution!

Subaru/Hyper Suprime-Cam

SHELLQs

Subaru High-z Exploration of Low-Luminosity Quasars

ជ

Members

<u>Y. Matsuoka¹ (PI)</u>

M. Akiyama², N. Asami³, S. Foucaud, T. Goto⁴, Y. Harikane⁵, H. Ikeda¹, M. Imanishi¹, K. Iwasawa⁶, T. Izumi⁵, N. Kashikawa¹ T. Kawaguchi⁷, S. Kikuta¹, K. Kohno⁵, C.-H. Lee¹, R. H. Lupton⁹, T. Minezaki⁵, T. Morokuma⁵, T. Nagao⁸, M. Niida⁸, M. Oguri⁵, Y. Ono⁵, M. Onoue¹, M. Ouchi⁵, P. Price⁹, H. Sameshima¹⁰, A. Schulze⁵, T. Shibuya⁵, H. Shirakata¹¹, J. D. Silverman⁵, M. A. Strauss⁹, M. Tanaka¹, J. Tang¹², Y. Toba⁸ ¹NAOJ, ²Tohoku, ³JPSE, ⁴Tsinghua, ⁵Tokyo, ⁶Barcelona, ⁷Sapporo Medical, ⁸Ehime, ⁹Princeton, ¹⁰Kyoto Sangyo, ¹¹Hokkaido, ¹²ASIAA

ALMA Cycle 4 observations

Quasar	Zopt	M 1450	L _{Bol} (L _{sun})	BAL	θ ([CII])	1σ (mJy/b), dV=50 km/s	1σ (μJy/b): cont.
J0859+0022	6.39	-23.56	3.9E+12	Ν	0.64" x 0.47"	0.12	9.5
J1152+0055	6.37	-24.91	1.4E+13	Ν	0.52" x 0.47"	0.24	20.7
J2216-0016	6.10	-23.56	3.9E+12	Y	0.54" x 0.43"	0.18	13.2
J1202-0057	5.93	-22.44	1.4E+12	Ν	0.79" x 0.71"	0.12	8.8

- Four HSC quasars at z~6 (from Matsuoka+16)
- Aimed at detecting the [CII] and underlying rest-FIR continuum emission

Band 6 full spectrum: J2216 (example)

Results: Spatial distribution

Color = [CII] 9 Contour = FIR continuum

FIR properties of the HSC-quasars

- <u>LIRG-class</u> objects @ z > 6 !
- Moderate SFR (23-40 M_{sun}/yr; L_{IR}-based)
 - c.f., SFR ~ 100-1000 M_{sun}/yr for optically luminous quasars @ z > 6

Size of the emitting region

- FWHM ~ <u>a few kpc</u>
- <u>Comparable</u> to the sizes of optically-luminous quasars (SFR ~ 100-1000 M_{sun}/yr; M_{dust} > 1e8 M_{sun})
 - \rightarrow An order of mag. difference in Σ_{ISM}
 - → Key parameter of <u>SMBH accretion</u> (e.g., Hopkins & Quataert 2010)

Discussion: Star-forming nature and early co-evolution in the HSC quasars

v²GC simulation (SAM) Ishiyama et al. 2015, Shirakata et al. in prep. (P5-07)

> Volume: 1.12 h⁻¹ cGpc DM resolution: 2.2E8 M_{sun} Particles: 8192³

> > from v2GC simulation (Ishiyama et al. 2015)

Star formation levels

Star formation levels

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently

(a) Isolated Disk

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with Me>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled

- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO
- host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

M59

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) "hot halo" from feedback sets up quasi-static cooling

- large BH/spheroid - efficient feedback - halo grows to "large group" scales:

mergers become inefficient

- growth by "dry" mergers

Hopkins et al. 2008, ApJS, 175, 356

Group-1

Roughly follow the local relation

 → merger-induced, synchronised
 SMBH-galaxy evolution model may explain (although many of them must live in quite massive halos)

Group-2

- Quite hard to reproduce with the v2GC scheme; another scheme
- Appear as over-massive M_{BH} at z
 ~ 0 as well?

Summary

- ALMA follow-up of four low-luminosity HSC quasars at z > 6.
- LIRG-like FIR properties (L_{FIR}, L_[CII], M_{dust}) in their hosts.
 SFR ~ 20-40 M_{sun}/yr
 - → Clear contrasts to those of the previously discovered quasarhosts (~ULIRG/SMG-class star formation)
- ◆ The HSC quasars are on or below the MS at z ~ 6
 → Rapid transition phase to quiescent galaxies?
- Low-luminosity quasars follow the local co-evolutionary relations
- Adding lower-luminosity (lower-mass) quasars enhances the likely existence of two quasar populations,
 (i) those roughly following the local relation ← standard model :)
 (ii) those showing clear enhancement in M_{BH} ← another scheme?