A Novel Model for Line-driven Disk Winds: Origin of UFOs and Self-regulation of SMBH Growth

Mariko NOMURA (Keio University)

Ken OHSUGA (NAOJ), Chris DONE (Durham Univ.)

Ultra-fast outflows

- suggested by absorption lines of FeXXV and/or FeXXVI in X-ray spectra
- outflow speed ~0.1c-0.3c
- detected in ~40% of AGNs

UFOs may have an important role in the co-evolution of SMBHs and their host galaxies because the mass outflow rate and energy outflow rate are large.

Line-driven disk winds

- accelerated by the radiation force due to spectral lines (line force)
- The line force accelerates moderately ionized metals.

Reproduce the observational features of UFOs

Aim of this work

- Previous model:
 - Ignore decrease of the accretion rate due to the disk wind
 - $\ref{eq:when the Eddington ratio} \gtrsim 0.5$, the outflow rate is larger than the accretion rate.

→ violate the mass conservation

- This work:
 - construct a new model in which the outflow rate, the accretion rate and the wind structure are calculated self-consistently
 - research a role of the outflow in the context of the SMBH growth

Method

 $\begin{array}{l} \underline{\text{Basic equations [polar coordinate } (r, \theta, \phi)]} \\ \text{(1) Mass conservation} \quad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \\ \end{array}$ $\begin{array}{l} \frac{\partial (\rho v_r)}{\partial t} + \nabla \cdot (\rho v_r v) = -\frac{\partial p}{\partial r} + \rho \left[\frac{v_{\theta}^2}{r} + \frac{v_{\varphi}^2}{r} + g_r + f_{\text{rad}}, r \right] \\ \frac{\partial (\rho v_{\theta})}{\partial t} + \nabla \cdot (\rho v_{\theta} v) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \rho \left[-\frac{v_r v_{\theta}}{r} + \frac{v_{\varphi}^2}{r} \cot \theta + g_{\theta} + f_{\text{rad}}, \theta \right] \\ \frac{\partial (\rho v_{\varphi})}{\partial t} + \nabla \cdot (\rho v_{\varphi} v) = -\rho \left[\frac{v_{\varphi} v_r}{r} + \frac{v_{\varphi} v_{\theta}}{r} \cot \theta \right] \\ \end{array}$ $\begin{array}{l} \text{(3) Energy equation} \quad \frac{\partial}{\partial t} \left[\rho \left(\frac{1}{2} v^2 + e \right) \right] + \nabla \cdot \left[\rho v \left(\frac{1}{2} v^2 + e + \frac{p}{\rho} \right) \right] = \rho v \cdot g + \rho \mathcal{L} \\ \text{Radiative heating/cooling} \end{array}$

Radiation force including the line force

Force multiplier: function of density, ionization parameter ξ , and velocity gradient (Stevens & Kallman 1990) ionization parameter: $\xi = \frac{4\pi F_X}{n}$ dependence ξ density velocity gradient M

Mass outflow rate and accretion rate

For small inflow rate the mass outflow rate is small and $\dot{M}_{\rm acc}\sim \dot{M}_{\rm in}$.

For large inflow rate, the mass accretion rate is less than a half of the inflow rate. Mass outflow rate and accretion rate

These results are consistent with that almost all quasars are sub-Eddington.

Spectral Energy Distributions

Role of line-driven winds

Summary

- We constructed the self-consistent model of the linedriven disk winds.
- The line-driven winds decrease the mass accretion rates onto SMBHs.
- The line-driven winds suppress the overgrowth of SMBHs in the final stage of their evolution.

→ Self-regulation of SMBH Growth