New International VLBI Arrays in East Asia: Accomplishments in AGN Sciences with the KVN and VERA Array (KaVA) and the East-Asian VLBI Network (EAVN)

Contents

VLBI Arrays in East Asia KaVA AGN Large Program Multi-Epoch Monitoring of 3C 84 East-Asian VLBI Network (EAVN) Summary

WAJIMA, Kiyoaki (輪島清昭) (Korea Astronomy and Space Science Institute; 韩国天文研究院) 2017年12月4日 동아시아 활동성은하핵 워크샵

Very Long Baseline Interferometer (VLBI)

- Instrument to obtain various spatial frequency components, V, with different baseline lengths
- Source's brightness distribution (or image), *I*, can be obtained by inverse-Fourier-transforming *V*

 $V(v, u, v) = \iint_{\text{source}} I(v, l, m) \exp(2\pi i(ul + vm)) dl dm$

VLBI Array in East Asia: VERA and KVN

- VERA (VLBI Exploration of Radio Astrometry: 2001 –)
 - 4 antennas with baseline
 lengths of 1,000 2,300 km
 - Dual-beam system for precise astrometry to investigate Galactic dynamics

- KVN (Korean VLBI Network: 2008 –)
 - 3 antennas with baseline lengths of 300 480 km
 - Multi-frequency simultaneous receiving system at 22/43/86/129 GHz

Summary

3/27

The KVN and VERA Array (KaVA)

- The first international collaborative VLBI array for open-use operation in East Asia (2013 –)
 - Complementary antenna distribution for obtaining highfidelity radio images at 22/43 GHz
 - Conducting more than
 1000-hour observations per
 year (including 500-hour
 observations for open use)
 - Large Program has been launched for three science fields (AGN, evolved star, star-forming region)

EAVN

Simultaneous 22/43 GHz Receiver System

- The world's first four-frequency simultaneous receiving system was realized with KVN (cf. Han et al. 2013, PASP, 125, 539)
- Multi-frequency simultaneous receiving capability was imported to VERA (and Yebes (Spain))

Simultaneous 22/43 GHz VLBI campaign will be conducted in 2018 January with KaVA

VLBI in EA

KaVA AGN

3C 8,

EAVN

Summary

Simultaneous Receiving System 43 GHz visibility phase for 22/43 GHz simultaneous VLBI observation of 4C 39.25 with KVN+VERA

No phase calibration

After FTP

43 GHz phase can be compensated by using 22 GHz phase (Frequency Phase Transfer (FTP) technique; e.g. Algaba et al. 2015, JKAS, 48, 237)

Long-Term Monitoring Program of AGN

• KVN Key Science Program

- Interferometric Monitoring of Gamma-Ray Bright AGNs (iMOGABA) (PI: Sang-Sung Lee (이상성))
 - Intensive study of individual source (e.g., 3C 84 → Talk by Jeffrey Hodgson (in this session)
- Plasma-Physics of AGNs (PAGaN) (PI: Sascha Trippe) → Talk by Sascha (in this session)
- KaVA AGN Large Program
 - M87 (PI: Kazuhiro Hada (秦和弘), Jongho Park (박종호), Hyunwook Ro (노현욱)
 - Sgr A* (PI: Guang-Yao Zhao (赵光耀))
- KaVA/KVN General Observing Time
 - 3C 84 (PI: Motoki Kino (紀基樹), Kiyoaki Wajima (輪島清 昭)

<u>Summary</u>

1st-Term KaVA AGN Large Program

- Motivation: "What happens in the vicinity of supermassive black holes?"
- Target: Sgr A* and M87 (nearby supermassive black hole sources)
- Method:
 - Sgr A*: Biweekly monthly monitoring at 43 GHz
 - M87: Biweekly monitoring at 22/43 GHz
- Total observing time
 - Sgr A*: 60 hours
 - M87: 124 hours

Summary

8/27

(*u*, *v*) Coverage for Sgr A*

 KaVA provides better sampling in (*u*, *v*) plane for Sgr A* than VLBA + GBT thanks to denser antenna location

VLBI in EA

Two-Dimensional Size of Sgr A*

 KaVA 43 GHz image of Sgr A* (Zhao et al. 2017, IAUS, 322, 56) and comparison of source's intrinsic size between images obtained with VLBA and KaVA

VLBI in EA

Biweekly Monitoring of M87

- Biweekly KaVA monitoring of a nearby AGN M87 at 22 GHz from December 2013 to June 2014 (Hada et al. 2017, PASJ, 69, 54)
 - Detection of superluminal motion and gradual acceleration of jet components in the angular scale of 1 – 20 mas (linear scale of 0.1 – 2 pc)

Investigating jet acceleration mechanism with dense VLBI monitoring

VLBI in EA

KaVA AGN

82

EAVN

Summar

Biweekly Monitoring of M87

Apparent velocity profile with the distance from BH
 → Jet acceleration within 0.1 – 20 mas (= 140 – 2800 R_s) from BH

Summary

Preliminary Result of KaVA AGN LP of M87

Biweekly monitoring of M87 (Park et al. in prep.)
 Mixture of fast and slow component

VLBI in EA

3C 84 (z = 0.0176; 1 mas = 0.36 pc)

- Discovery of 10 pc-scale free-free-absorbed (FFA) plasma torus with multifrequency VLBI at cmwavelength (Walker et al. 2000, ApJ, 530, 233)
- Monthly monitoring with KaVA at 43 GHz, and multiepoch observations with KVN at 86/129 GHz

(Urry, Padovani 1995, PASP, 107, 803)

KaVA/KVN Images of 3C 84 at 43/86 GHz

- Detection of a new component (N1) in the north of C1
 - Peak intensity of N1: 0.18 Jy/beam (restored KaVA 43 GHz) 0.41 Jy/beam (KVN 86 GHz)
 - Free-free absorbed plasma torus with 1-pc scale

VLBI in EA

12-Epoch Images of 3C 84 at 43 GHz

- Detection of new northern component (N1) (cf. Fujita, Nagai 2017, MNRAS, 465, L94)
- Abrupt flux increase of C3 (cf. Hodgson et al. 2016, arXiv:1612.07874) \bullet
- Transverse \rightarrow outward motion of C3 16/27

Relative Position of C3

 Relative peak intensity position of C3 with respect to C1 (0, 0)

The East-Asian VLBI Network (EAVN)

 VLBI arrays operated at each East-Asian country: CVN (China), KVN (Korea), JVN and VERA (Japan)

Launch of 'the East-Asian VLBI Network' (2013 –)

- EAVN activities are conducted by 'East Asia VLBI Consortium' under EACOA
- Main characteristics of EAVN
 - (Mildly) high angular resolution at cm- ~ mm-wavelengths
 - High sensitivity thanks to large-aperture antennas (Tianma 65 m, Nobeyama 45 m, etc.)
 - Long common-sky time with Australian telescopes \rightarrow high angular resolution in north-south direction

.

Nanshan 26 m

SHAO/

(Image Credit: Reto Stöckli, NASA Earth Observatory)

riki20 m

0

....

Ogasawara 20

EAVN: Specifications (as of 2017 Dec 4)

- Number of (potential) telescopes: 20
 - Korea: 4, China: 5, Japan: 11
- (Possible) frequency coverage:
 - 6.7 GHz (11 stations), 8 GHz (15), 22 GHz (17), 43 GHz (11)
- (Expected) angular resolution:
 - 2.4 mas (6.7 GHz; Ogasawara Kunming)
 - 1.5 mas (8 GHz; Ogasawara Nanshan)
 - 0.6 mas (22 GHz; Ogasawara Nanshan)
 - 0.7 mas (43 GHz; Ogasawara Tianma)
- Sensitivity for 7- σ fringe detection (τ = 60 s, B = 256 MHz):
 - 1.6 mJy (8 GHz; Tianma KVN)
 - 9.5 mJy (22 GHz; Tianma KVN)
- (Expected) recording rate: ≧ 1 Gbps (= 256 MHz BW)
- (Currently-used) correlator:

KJCC (Korea): Daejeon Hardware Correlator and DiFX
 SHAO (China): DiFX

(Image Credit: Reto Stöckli, NASA Earth Observatory)

EAVN AGN Campaign: Overview

- Total observing time: 140 hours (17 epochs)
 - 22 GHz: 40 hours (5 epochs),
 43 GHz: 100 hours (12 epochs)
- Number of telescopes: 15 (IT: 4, CN: 2, KR: 4, JP: 7)
- Target: Sgr A*, M87
- Angular resolution
 - 22 GHz: 0.26 mas (Noto –
 Ogasawara), 0.55 mas
 (Nanshan Ogasawara)
 - 43 GHz: 0.13 mas (Noto –
 Ogasawara), 0.63 mas
 (Mizusawa Ishigakijima)

_	#	Date	Time (UT)	Band	Target
				22 43	M87 Sgr A*
	1	2017 Mar 12	18:55 - 00:55		
	2	2017 Mar 18	12:45 – 19:45		
	3	2017 Mar 19	11:40 - 18:40		
	4	2017 Mar 27	13:10 - 23:10		
	5	2017 Apr 3	13:20 – 23:20		
	6	2017 Apr 4	12:40 – 22:40		
	7	2017 Apr 9	12:20 – 22:20		
	8	2017 Apr 14	12:00 – 22:00		
	9	2017 Apr 17	11:50 – 18:50		
	10	2017 Apr 18	11:45 – 21:45		
	11	2017 Apr 24	09:20 - 16:20		
	12	2017 Apr 25	09:15 – 16:15		
	13	2017 Apr 26	15:55 – 21:55		
	14	2017 May 10	08:20 – 17:20		
	15	2017 May 11	08:15 – 17:15		
	16	2017 May 25	14:00 - 20:00		
	17	2017 May 26	07:15 – 16:15		

VLBI in EA

EAVN

Summary

....

000

Nanshan 26 m

SHAO/

Noto 32 m

Two Italian telescopes (Medicina and Noto) also joined in the campaign. JHZ

shigakijima 20 n

Hz

Hz Hz

riki 20 m

0

Preliminary Results of EAVN AGN Campaign

- First 43 GHz image of Sgr A* by EAVN (KaVA + Tianma) on 2017 Apr 6 (on-source time: 10 hours)
 - Clearly reconstructed a Gaussian structure of the source

(Image courtesy: Dr. Guang-Yao Zhao (KASI))

VLBI in EA

KaVA AGN

3C 84

EAVN

Summary

Preliminary Results of EAVN AGN Campaign

 First 22 GHz image of M87 with the maximum baseline length (~ 5,500 km) of EAVN (KaVA + <u>Tianma</u> + <u>Nanshan</u> (Urumqi)) on 2017 Mar 18 (on-source time: 7 hours)

VLBI in EA

KaVA AGN

ЗC

84

EAVN

Summary

23/27

(Image courtesy: Dr. Kazuhiro Hada (NAOJ))

Tentative Plan for EAVN Open Use

- Start of operation: 2018B semester (2018 August)
 - KaVA + Tianma
 - Shared-risk operation
 - Proposals can be submitted from all over the world
- Total observing time: 100 hours/semester (= 40% of KaVA open use)
- Observation frequency: 22, 43 GHz, single polarization

EAVN: Future Development

- Collaboration with Australian telescopes
 - Long common-sky time with Australian telescopes \rightarrow high angular resolution in north-south direction
 - VLBI test observation with EAVN and one ATCA antenna in 2016
- New telescopes from China
 - Qi-Tai 110 m radio telescope (QTT) in Xinjiang
 - Low-frequency (< 3 GHz) VLBI with FAST 500 m telescope
- New telescopes from Thailand
 - Thai VLBI Network (TVN)

Preliminary Results of Imaging Test

- First 43 GHz image of 3C 273 by EAVN + ATCA on 2016 March 20
 - Verh high angular resolution (~ 0.1 mas) can be obtained in the north-south direction

(Image courtesy: Dr. Richard Dodson (ICRAR))

Summary

- International collaborative VLBI array in East Asia, KaVA, is producing various results in AGN sciences thanks to its array characteristics.
- Biweekly monitoring of M87 and Sgr A* with KaVA gives highfidelity images at 22/43 GHz, which provides important information to investigate jet physics in the vicinity of supermassive black hole.
- We have conducted 17-epoch observations for 'the EAVN AGN Campaign' in 2017. High-fidelity images with high angular resolution were obtained thanks to Chinese telescopes such as Nanshan and Tianma.
- We are planning to start EAVN open-use operation from 2018B semester with basic observation modes.

Summary