Imaging Black Holes and AGNs with the Event Horizon Telescope

Kazu Akiyama

NRAO Jansky Fellow / MIT Haystack Observatory

The Event Horizon Telescope Consortium

The Shadow of the Black Hole

Non-spinning Black Hole

Maximumly spinning BH

(Bardeen 1973; Falcke et al. 2000) with a radius that changes only by 4% with the spin (Johannsen & Psaltis 2010)

Black Holes with the Largest Angular Sizes

Source	BH Mass (M _{solar})	Distance (Mpc)	Angular radius of R _s (µas)
Sgr A* Galactic Center	4 x 10 ⁶	0.008	IO
M87 Virgo A	3 - 6 x 10 ⁹	17.8	3.6 - 7.3
MI04 Sombrero Galaxy	I x 109	10	2
Cen A	5 x 10 ⁷	4	0.25

The best frequency to see black holes

Frequency (GHz)

(Adapted from Broderick et al. 2009, ApJ)

Moscibrodzka et al. 2014, A&A

Event Horizon Telescope

Shiokawa+

M87

Moscibrodkza, Dexter+17

'Early' Event Horizon Telescope

1. 1.3 mm emission is very compact (2007)

The emission is offset from the black hole

NRAO

- I. I.3 mm emission is very compact (2007)

 The emission is offset from the black hole
- 2. Variability occurs on small (ISCO) scales (2009)

Fish et al. 2011, ApJL

- 1. 1.3 mm emission is very compact (2007)

 The emission is offset from the black hole
- 2. Variability occurs on small (ISCO) scales (2009)
- 3. Discovery of the non-Gaussian-shape in the structure (2013)

- I. I.3 mm emission is very compact (2007)

 The emission is offset from the black hole
- 2. Variability occurs on small (ISCO) scales (2009)
- 3. Discovery of the non-Gaussian-shape in the structure (2013)
- 4. Discovery of the asymmetry in the structure (2007 2013)

Broderick et al. 2016, ApJ Fish et al. 2016, ApJ

- 1. 1.3 mm emission is very compact (2007)

 The emission is offset from the black hole
- 2. Variability occurs on small (ISCO) scales (2009)
- 3. Discovery of the non-Gaussianity in the structure (2013)
- 4. Discovery of the asymmetry in the structure (2007 2013)
- 5. Analytic RIAF models/GRMHD models disfavor face-on disk

1. 1.3 mm emission is very compact (2009)

(Doeleman et al. 2012, Science)

1. 1.3 mm emission is very compact (2009) Consistent with the parabolic collimation profile of the jet

I. I.3 mm emission is very compact (2009)
 Consistent with the parabolic collimation profile of the jet
 The jet base is magnetically dominated

Kino et al. 2015, ApJ

 I. I.3 mm emission is very compact (2009)
 Consistent with the parabolic collimation profile of the jet The jet base is magnetically dominated

2. Event Horizon Scale structure is stable

during an enhanced TeV gamma-ray state (2012)

TeV emission region ~ 20 - 60 R_s

Akiyama et al. 2015, ApJ

Rs-scale Polarization of Sgr A*

Johnson et al. 2015, Science

Ordered Fields at the Event Horizon

Johnson et al. 2015, Science

EHT Collaboration

2012

2014

2016

Event Horizon Telescope 2017/2018

New VLBI Imaging Techniques

Maximum Entropy Method (MEM)

Chael et al. 2016, Fish et al. 2014, Lu et al. 2014, 2016

Sparse Modeling

Akiyama et al. 2017a, 2017b Ikeda et al. 2016, Honma et al. 2014

CHIRP (Machine-learning)

Bouman et al. 2016

- All techniques can reconstruct images from closure quantities (closure phase, closure amplitude, ...,)
- All techniques outperform CLEAN even when using closure phases particularly in super-resolution regimes

Mitigation of Scattering / Variation

(Dynamical Imaging: Johnson et al. 2017, ApJ, Bouman et al. 2017, submitted)

Conclusion

1.3mm VLBI confirms ~few Rsch sizes for SgrA* & M87

Imaging an Event Horizon and observing BH orbits are within reach in < 2 years.

Event Horizon Telescope has been fully on-line since 2017.

EHT Postdoc Fellow position at MIT Haystack Observatory (To be posted in MIT/AAS websites tonight)

Team and Support

Another issue for Sgr A*: Scattering

 $\lambda = 0.75 \text{ mm}$ y = 400 GHz

Wavelength (cm)

Doeleman et al. 2008, Nature

Johnson & Narayan 2016 Johnson & Gwinn 2015

- I. I.3 mm emission is very compact (2009)
 Consistent with the parabolic collimation profile of the jet The jet base is magnetically dominated
- 2. Event Horizon Scale structure is stable during an enhanced TeV gamma-ray state (2012)
- 3. Closure Phase is consistent with zero (2012)

 Consistent with the compact emission models

Akiyama et al. 2015, ApJ

